5,026 research outputs found

    The Grounding of an Ice Shelf in the Central Arctic Ocean: A Modeling Experiment

    Get PDF
    A numerical ice sheet model was used in a first test towards evaluating the hypothesis that, during a period of large-scale glaciation, an ice shelf emanating from the Barents/Kara Seas grounded across parts of the Lomonosov Ridge to a depth of around 1000 m below present sea level (Jakobsson, 1999; Polyak et al., 2001). Despite that we not include complex ice shelf physics or grounding line mechanics in our model and treat the process of marine melting in a simple manner, our experiments are the necessary first steps toward providing a comprehensive reconstruction of the former ice-sheet/ice-shelf system in the Arctic Ocean. A series of model runs was performed where ice shelf mass balance and ice shelf strain per unit time (strain rate) were adjusted. The mass balance and shelf ice strain rate are the key model parameters that govern the flux of ice into the Arctic Ocean. Grounding on the Lomonosov Ridge was not modeled when the ice shelf strain rate was 0.005 year-1 (i.e. a free flowing ice shelf). Even with low rates (\u3c10 cm/year) of basal melting, the ice shelf thickness was always less than 100 m over the central part of the ridge. Our experiment suggests that grounding on the Lomonosov Ridge by a free-flowing ice shelf is not possible. When the strain rate in the shelf ice was reduced to zero, however, the shelf thickness increased substantially. Such conditions are likely only to have occurred during periods of large-scale glaciation if substantial stagnant and thickened sea ice was present in the ocean, buttressing the ice shelf flowing from the Barents Sea. A comprehensive study using a coupled icesheet/ shelf/sea-ice model would build on these preliminary results and have the potential to further constrain the history of circum-Arctic Ocean ice sheets

    A Modeling Experiment on the Grounding of an Ice Shelf in the Central Arctic Ocean During MIS 6

    Get PDF
    High-resolution chirp sonar subbottom profiles from the Lomonosov Ridge in the central Arctic Ocean, acquired from the Swedish icebreaker Oden in 1996, revealed large-scale erosion of the ridge crest down to depths of 1000 m below present sea level [Jakobsson, 1999]. Subsequent acoustic mapping during the SCICEX nuclear submarine expedition in 1999 showed glacial fluting at the deepest eroded areas and subparallel ice scours from 950 m water depth to the shallowest parts of the ridge crest [Polyak et al., 2001]. The directions of the mapped glaciogenic bed-forms and the redeposition of eroded material on the Amerasian side of the ridge indicate ice flow from the Barents-Kara Sea area. Core studies revealed that sediment drape the eroded areas from Marine Isotope Stage (MIS) 5.5 and, thus, it was proposed that the major erosional event took place during Marine Isotope Stage (MIS) 6 [Jakobsson et al., 2001]. Glacial geological evidence suggests strongly that the Late Saalian (MIS 6) ice sheet margin reached the shelf break of the Barents-Kara Sea [Svendsen et al. in press] and this gives us two possible ways to explain the ice erosional features on the Lomonosov Ridge. One is the grounding of a floating ice shelf and the other is the scouring from large deep tabular iceberg. Here we apply numerical ice sheet modeling to test the hypothesis that an ice shelf emanating from the Barents/Kara seas grounded across part of the Lomonsov Ridge and caused the extensive erosion down to a depth of around 1000 m below present sea level. A series of model experiments was undertaken in which the ice shelf mass balance (surface accumulation and basal melting) and ice shelf strain rates were adjusted. Grounding of the Lomonosov Ridge was not achieved when the ice shelf strain rate was 0.005 yr-1 (i.e. a free flowing ice shelf). However this model produced two interesting findings. First, with basal melt rates of up to 50 cm yr-1 an ice shelf grew from the St. Anna Trough ice stream across the section of the ridge where there is evidence for grounding. Second, even with ultra low rates of basal melting, the ice shelf thickness was always less than 200 m over the ridge. We conclude that grounding of the Lomonosov Ridge by a free-flowing ice shelf is not possible. When the strain rate was reduced to zero, however, the shelf thickness increased substantially. Such conditions are likely only to have occurred during periods of large-scale glaciation across the Eurasian Arctic such as in the Saalian, and if a substantial stagnant thickened sea ice was present in the ocean, buttressing the shelf flowing from the Barents Sea. Our results are interpreted using new techniques for dynamic 3Dvisualization

    Low temperature phase diagram and critical behaviour of the four-state chiral clock model

    Full text link
    The low temperature behaviour of the four-state chiral clock (CC4CC_4) model is reexamined using a systematic low temperature series expansion of the free energy. Previously obtained results for the low temperature phases are corrected and the low temperature phase diagram is derived. In addition, the phase transition from the modulated region to the high temperature paraphase is shown to belong to the universality class of the 3d-XY model.Comment: 17 pages in ioplppt style, 3 figure

    Coarsening Dynamics of Crystalline Thin Films

    Full text link
    The formation of pyramid-like structures in thin-film growth on substrates with a quadratic symmetry, e.g., {001} surfaces, is shown to exhibit anisotropic scaling as there exist two length scales with different time dependences. Analytical and numerical results indicate that for most realizations coarsening of mounds is described by an exponent n=0.2357. However, depending on material parameters, n may lie between 0 (logarithmic coarsening) and 1/3. In contrast, growth on substrates with triangular symmetries ({111} surfaces) is dominated by a single length scale and an exponent n=1/3.Comment: RevTeX, 4 pages, 3 figure

    Numerical modelling and simulation in sheet metal forming

    Get PDF
    The application of numerical modelling and simulation in manufacturing technologies is looking back over about a 20–30 years history. In recent years, the role of modelling and simulation in engineering and in manufacturing industry has been continuously increasing. It is well known that during manufacturing processes simultaneous the effect of many different parameters can be observed. This is the reason why in former years, detailed analysis of manufacturing processes could have been done only by time-consuming and expensive trial-and-error methods. Due to the recent developments in the methods of modelling and simulation, as well as in computational facilities, modelling and simulation has become an everyday tool in engineering practice. Besides the aforementioned facts, the emerging role of modelling and simulation can also be explained by the growing globalisation and competition of the world market requiring shorter lead times and more cost effective solutions. In spite the enormous development of hardware and software facilities, the exclusive use of numerical modelling still seems to be very time- and cost consuming, and there is still often a high scepticism about the results among industrialists. Therefore, the purpose of this paper is to overview the present situation of numerical modelling and simulation in sheet metal forming, mainly from the viewpoint of scientific research and industrial applications

    Reconstructing ice-sheet accumulation rates at ridge B, East Antarctica

    Get PDF
    Understanding how ice sheets responded to past climate change is fundamental to forecasting how they will respond in the future. Numerical models calculating the evolution of ice sheets depend upon accumulation data, which are principally available from ice cores. Here, we calculate past rates of ice accumulation using internal layering. The englacial structure of the East Antarctic ice divide at ridge B is extracted from airborne ice-penetrating radar. The isochronous surfaces are dated at their intersection with the Vostok ice-core site, where the depth–age relationship is known. The dated isochrons are used as input to a one-dimensional ice-flow model to investigate the spatial accumulation distribution. The calculations show that ice-accumulation rates generally increase from Vostok lake towards ridge B. The western flank of the ice divide experiences markedly more accumulation than in the east. Further, ice accumulation increases northwards along the ice divide. The results also show the variability of accumulation in time and space around the ridge B ice divide over the last 124 000 years

    Strong Resonance of Light in a Cantor Set

    Full text link
    The propagation of an electromagnetic wave in a one-dimensional fractal object, the Cantor set, is studied. The transfer matrix of the wave amplitude is formulated and its renormalization transformation is analyzed. The focus is on resonant states in the Cantor set. In Cantor sets of higher generations, some of the resonant states closely approach the real axis of the wave number, leaving between them a wide region free of resonant states. As a result, wide regions of nearly total reflection appear with sharp peaks of the transmission coefficient beside them. It is also revealed that the electromagnetic wave is strongly enhanced and localized in the cavity of the Cantor set near the resonant frequency. The enhancement factor of the wave amplitude at the resonant frequency is approximately 6/∣ηr∣6/|\eta_\mathrm{r}|, where ηr\eta_\mathrm{r} is the imaginary part of the corresponding resonant eigenvalue. For example, a resonant state of the lifetime τr=4.3\tau_\mathrm{r}=4.3ms and of the enhancement factor M=7.8×107M=7.8\times10^7 is found at the resonant frequency ωr=367\omega_\mathrm{r}=367GHz for the Cantor set of the fourth generation of length L=10cm made of a medium of the dielectric constant ϵ=10\epsilon=10.Comment: 20 pages, 11 figures, to be published in Journal of the Physical Society of Japa

    Event generation with SHERPA 1.1

    Full text link
    In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron--hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.Comment: 47 pages, 21 figure
    • …
    corecore